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SUMMARY: 
The preparation of nylon-6/hollow glass microspheres composites by the 

RIM procedure, leading to a new material with reduced density and increased 
stiffness, is described. The shear moduli of these composites show a linear 
dependency on the filler concentration. By means of a modified Kerner 
equation the shear moduli of the various glass spheres were calculated. A 
linear dependency between the shear modulus of a glass sphere and its wall 
thickness is demonstrated. A direct method for the determination of the 
shear moduli of those glass spheres having a density lower than the matrix 
material is presented. 

INTRODUCTION 
The application of light weight fillers, in the form of hollow glass 

spheres, in plastics has become more and more important in the last few 
years [I]. The main reason of this is weight reduction without loss of 
stiffness and strength. As a consequence of their relatively low 
compressive strength they cannot be blended with thermoplastic materials in 
the usual blending equipment (e.g. extruders, banbury mixers etc.). So 
applications have been restricted to thermoset materials only. 

We felt however, that the use of the glass spheres in thermoplastic 
materials would become possible if these spheres are added to an in situ 
polymerising system, if at least measures are taken to prevent segregation 
of the glass spheres during polymerisation. The fast activated anionic 
polymerisation of caprolactam [2], a technique also used in reaction 
injection moulding (RIM), seemed ideally suited for this purpose. 

In order to be able to predict mechanical properties like the modulus 
of elasticity or the shear modulus of a composite material, the knowledge 
of those moduli of the filler materials is of primary importance. For 
hollow glass spheres these data are not known, however. 

In this paper we describe the preparation of a series of nylon-6- 
hollow glass spheres composites. A study was made on the relationship 
between some mechanical properties and the volume fraction and kind of 
microspheres. 

EXPERIMENTAL 
Materials: The catalyst and the activator, supplied as masterbatches 

in caprolactam, were gifts from DSM, The Netherlands. The catalyst 
contains 1.39 moles sodium salt of caprolactam per kg of material; the 
accelerator contains 2.0 moles of the reaction product of i mole hexa- 
methylenediisocyanate with 2 moles of caprolactam per kg of material. The 
caprolactam, a special anionic polymerisation quality, was purchased from 
DSM, The Netherlands. The hollow glass microspheres were a gift of 3M 
Company. Their properties are summarized in Table i. The glass bubbles, 
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Table I. Properties of 3M glass spheres with diameter = 60#m (10-160 ~m). 

coated a uncoated 

type of b wall thickness c density d type of b wall thickness c density d 
sphere (#m) (kg/m s ) sphere (~m) (kg/m a ) 

A32/2500 1.01 280 C15/250 0.49 140_ 
A38/4000 1.41 390 B23/500 0.8 230 t 

B28/750 0.74 210 
B38/4000 1.41 390 
$60/I0000 2.13 575 

e 
massive 2900 

a) coated with Volan, a chrome methacroyl compound [3]. b) data given by 3M 
e.g. A32/2500: density 32 g/dl, compressive strength 2500 psi. e) wall 
thickness calculated from density and diameter = 60~m. d) data obtained by 
helium pyknometer determinations, e) glass spheres (diameter 45-70~m) 
purchased from Tamson N.V., Zoetermeer, The Netherlands. f) value from 3M. 

dried for 24 h at 120 ~ and the caprolactam were stored slightly above 
roomtemperature. Catalyst and activator were stored in a dessiecator 

Preparation of nu [4]: Caprolactam (37.5 g, 0.33 mol) was equally 
divided into two separate glass tubes (A and B) and was heated in a 
silicone oil bath held at a temperature of ca 135 ~ When the caprolactam 
was molten, the catalyst (1.5 g, 2.1 mmole) was added to tube A and the 
accelerator (1.05 g, 2.1 mmole) was added to tube B. When these additions 
were molten, heating was continued for another 5-10 min. Then the contents 
of tube B were added to tube A and the mixture was stirred with a glass rod 
for about I0 s (total polymerisation time is about i00 s). Then the 
contents of the tube were poured as fast as possible into an upright 
stainless steel mould, which was preheated for at least 30 min in an oven 
at ca 145 ~ The oven was closed again and after 5 min the nylon plate was 
removed from the mould and allowed to cool in a dessiccator. 

The mould consists of two highly polished stainless steel plates 
(20*8.5 em) kept apart by an aluminium spacer of 5 mm thickness. The parts 
are clamped together by nuts and bolts. The mould is open at one end; in 
this way 5 mm thick nylon plates with a width of 6.5 cm and a maximal 
length of 19 cm are produced. 

Preparation of glass filled nylon-6: The same procedure as outlined above 
was followed. After all organic additions were molten, the desired amount 
of glass bubbles was added to tube A. The amount of catalyst was increased 
gradually, with increasing amount of glass bubbles, to 120% of the 
prescribed amount at 50 vol % of glass bubbles. In this manner we prepared 
nylon plates filled with glass bubbles of the types given in Table i. The 
volume fraction of glass was increased in steps of 0.05. 

Determination of shear modulus: The composite plates, dry as made, were cut 
into strips of about 63"12"5 mm. The shear modulus was determined with a 
torsion pendulum [5] at room temperature. (In fact, with a torsion pendulum 
the storage modulus is determined, so where shear modulus is written, one 
should read storage modulus). In this way a curve of the shear modulus 
versus composition was obtained (Fig.l). In a second series the shear 
modulus was measured as a function of temperature (Fig.3). 
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Determination of impact strength: Izod notched impact strengths were 
determined according to ASTM D256. The strips had the same dimensions as 
those used for the determination of the storage modulus. A notch of 0.I 
inch was cut in the narrowest side. 

RESULTS AND DISCUSSION 
In preparing the nylon/glass composites the polymerisation sometimes 

failed at higher filler volume fractions. These problems were solved by 
increasing the amount of catalyst slightly. Apparently some water adhering 
to the glass bubbles caused this problem. In this manner we prepared 
composites with a range of densities, varying from 1130 kg/m s (nylon-6) up 
to 1750 kg/m 3 (nylon with 35% massive glass spheres) and down to 780 kg/m 8 
(nylon with 35% C15 glass bubbles). Measurements of the density of the 
composites over the plates from top to bottom showed that no segregation of 
the hollow glass spheres had taken place. 

As stated above we would like to be able to predict the flexural and 
shear moduli of the composite. These will be dependent on the volume 
fraction of filler and on the moduli of the matrix and the filler. If both 
these moduli are known, those of the composite can be predicted with the 
aid of Kerner's equation which for materials filled with spherical 
particles reads [6]: 

= I+A*B*~ (i) 
M 0 I-B*~ 

in which M=modulus of composite; M0-modulus of matrix; ~-volume fraction of 
filler; A=(7-5u)/(8-10u); ~=Poisson ratio (i.e. 0.38 for nylon-6); 
B=(~-I)/(~+A); ~=Mz/M0; Mr=modulus of the filler. 

Although the moduli of the hollow glass spheres are not known, it 
should be possible to determine them via Kerner's equation by measuring the 
moduli of the matrix material and of the composite. For that case we 
simplified Kerner's equation into a linear form, eq(2), from which B and 
hence ~ can be determined by a simple linear regression analysis of the 
measurements (Fig.l and Table 2). 

in (M/M0) = B~(I+A) (2) 

Control calculations showed that the use of this simplified equation 
is allowed for all values of ~ and for filler volume fractions ~=0 to 
~=0.50. No significant deviations are observed from Kerner's equation 
itself. 

Fig.l shows that the linear relation holds for all composites, hence 
it is not necessary to use the modified Kerner equation, which takes 
account of a correction for the maximum filler volume fraction [7]. 

Although coated and uncoated glass bubbles have been used, a 
difference in adhesion between matrix and filler, if there is any, will 
have no influence on the shear modulus as only small deformations were 
applied. In accordance with this expectation, the materials filled with A38 
or B38 glass bubbles show the same result. 

As can be seen also from fig.l the slope of the curve of the composite 
filled with glass bubbles B28 is more negative than expected on account of 
its suggested density. The only way to explain this curious result was to 
assume that the density of the B28 glass bubbles was lower than 280 kg/m s. 
Helium pyknometer measurements confirmed this assumption (Table i). 

Another conclusion that can be drawn from these measurements is that a 
linear relationship exists between the shear modulus of the glass bubbles 
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Fig.l. Experimental reduced 
storage modulus plotted 
against filler volume 
fraction of various nylon-6- 
hollow glass spheres 
composites (every point 
represents the mean value 
obtained from 4 to 8 samples). 
Full lines: results of 
regression analysis according 
to Eq.(2). 

and their density (Fig.2). And although the relationship between the wall 
thickness (d) and the density (p) is not a strict linear one: 

d = r[l- 3J(l-p/2900)] = p/290 #m (3) 

(for r = 30 ~m, mean radius; 2900 = density (in kg/m s) of pure glass) 

the deviations in the range p=100 to p=600 kg/m 3 are so small that for 
practical purposes a linear relationship between shear modulus and wall 
thickness of the glass bubbles can be assumed. 

This linear relationship is in agreement with theoretical 
considerations based on Kerner's equation. For that purpose we consider a 
glass matrix filled with air bubbles and one filled with hollow glass 
spheres with the same amount of air. This finally leads to the conclusion 
that ~ is linearly dependent on d (see Appendix): 

3d A 
= -- * - -  (4) 

r A+I 

By means of this equation we now can calculate the overall shear 
modulus of the hollow glass spheres, using the values for the shear modulus 
and the Poisson ratio of glass (1.9"104 N/mm 2 and 0.22 respectively) and 
the wall thicknesses of the spheres as given in Table I. As can be seen 

Table 2. Storage moduli calculated from experiments according to eq.(2). 

type of ~ G' G' 
glassbubble nylon a 

sphere (N/mm2) (N/mm2) 

C15 0.45 507 1128 
B28 0.62 719 1170 
B23 0.70 824 1172 
A32 0.91 1052 1157 
B38 1.16 1384 1193 
A38 1.16 1360 1172 
S60 1.84 2002 1088 
Massive 15.7 18870 1200 

a) G'nylon was found by extrapolation to 4=0; pure nylon-6:C'=1090 N/mm 2. 
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Fig.2. Relationship between 
storage modulus and density of 
the hollow glass spheres. 

from Table 3 a very good agreement with the measured values is obtained. 
For those glass bubbles having a modulus lower than that of the matrix 

an alternative method for the determination of this modulus seemed possible 
by its measurement as a function of the temperature. In these particular 
cases the modulus of the composite at temperatures below Tg will be the 
lower the more filler is present (~<i), whereas at higher temperatures the 
modulus will be the higher the more filler is present (~>i). The result is 
that the curves of the modulus versus temperature of a particular composite 
at different filler volume fractions will intersect at a point correspon- 
ding to the modulus of the filler (Fig.3; Table 4). 

Comparison of the moduli estimated by this method with those presented 
in Table 2 shows that a reasonable agreement exists in the order of 
magnitude of the various values. It is clear that this method has a limited 
applicability, as it is only usable for those filler materials having a 
lower modulus below Tg than the matrix. Moreover, the accuracy decreases 
strongly when the storage modulus of the filler approaches that of the 
matrix. However, in principle this is a direct method to measure the 
modulus of filler particles, independent of any theory. 

From Fig.l it is clear that blending nylon-6 with hollow glass spheres 
can result in an increase as well as a decrease of the stiffness with 
respect to the stiffness of the pure polymer. Of course a decrease in the 
stiffness is a disadvantage but, on the other hand, the decrease of the 
density is an advantage. In Table 5 some reduced moduli, compared with pure 
nylon-6, are shown for composites containing 40% (v/v) of glass spheres. 

Table 3. Experimental and calculated shear moduli of the glass spheres. 

type of ~(calc) =(exp) G' G' 
sphere calc.(N/mm 2 ) exp.(N/mm 2 ) 

~15 0.025 0.027 475 507 
B23 0.041 0.043 779 824 
B28 0.037 0.038 703 719 
A32 0.050 0.055 950 1052 
iB38 0.071 0.073 1349 1384 
A38 0.071 0.072 1349 1360 
$60 0.107 0.105 2033 2002 



472 

E 
Z 

"O 

a C15 
o. 5% 

O/o 

0 40 60 0 
T(~C) 

10 

b B 28 

o- 5~ 
o=35 % 

0 I I I 

40 60 BO 
. T (~C) 

J 
c B 23 

o: 5 % 

103 

b 

t 

~ 0 

10" 
$ 

% 

1 

d A 32 

0 , ' ' 0 ' 6' 8 40 60 80 40 0 0 
. T CC) - T(~ 

Fig.3a-d. Storage modulus of various composites versus temperature. 

Although a decrease in the modulus can occur (G'/G~ < i), the value of the 
reduced modulus (G'/p) is always larger than that of the pure polymer. 

No relationship between the data of the Izod notched impact strength 
determinations and the type of filler could be found. The only general 
conclusion is that the impact strength even at a small filler volume 
fraction of 0.05 is lowered, in some cases even to 45% of the value of the 
unfilled polymer, and that at higher filler fractions the impact strength 
is going down, for all composites to about 25% of the value of nylono6. 

The fracture surface of the samples was studied by scanning electron 
microscopy. The observations we made, were the following: 

Table 4. Shear modulus of glass spheres in N/mm 2 

type of point of Kerner 
sphere intersection 
C15 550 507 
B23 720 824 
B28 560 719 
A32 1170 1052 
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Table 5. Properties of composites containing 40% (v/v) glass spheres. 

type of p (kg/mS> G'/G~ (G'/p)/(G~/po) 
filler 

None 1130 i i 
C15 734 0.75 1.16 
B28 762 0.83 1.24 
B23 770 0.87 1.28 
A32 790 0.96 1.39 
A38/B38 834 1.06 1.45 
$60 908 1.28 1.59 
Massive 1838 2.16 1.33 

G , P0: modulus and density of pure nylon-6. 

a) In the composite filled with C15 glass bubbles nearly all bubbles were 
broken, in the composite filled with $60 bubbles only about 10% was broken. 
The other composites showed an intermediate picture, dependent on the 
density of the bubbles. 
b) In the composites filled with A38 and B38 bubbles a distinct difference 
was observed. In the A38 composite 60-70% of the bubbles was broken, while 
in the B38 composite only 30-40% was broken. Apparently the A38 bubbles, 
coated with Volan, adhere much better to the matrix than the B38 bubbles. 
If the adhesion strength is larger than the ultimate strength of the filler 
particles, these filler particles will fail; in the reverse case the 
adhesion will fail and the filler particles will remain unbroken. This 
behaviour is not reflected in the impact strength, however. This might mean 
that the impact strength of the hollow glass sphere itself is smaller than 
that of the matrix. The fact that at high filler fractions the impact 
strength of all composites, with exception of the one filled with massive 
glass, is the same, supports this view. 

CONCLUSIONS 
The RIM procedure is ideally suited for the preparation of nylon-6 

hollow glass sphere composites. The shear moduli of these materials show a 
linear dependency on the filler concentration. By means of Kerner's 
equation the shear moduli of the various glass bubbles were calculated and 
the correctness of these data was confirmed by means of torsion pendulum 
measurements. As a consequence it is possible to predict, with the aid of 
Kerner's equation, the modulus of any composite with hollow glass spheres 
as long as the properties of the matrix material are known. 

For composites containing glass bubbles with a modulus below Tg lower 
than that of the matrix material, curves of the shear modulus versus 
temperature show a point of intersection at the shear modulus of the filler 
material. For a limited number of filler materials this is an alternative 
method for the determination of this quantity and moreover, it is an 
absolute method, independent of any theory. 

Determination of the impact strength did not show a relationship 
between this quantity and the nature of the filler material. On the one 
hand the impact strength is lowered considerably upon filling with hollow 
glass spheres, apparently this filler being the weakest link in the 
composite, on the other hand an appreciable weight reduction up to 35% can 
be achieved, while the reduced stiffness of the composite is always 
increased. The choice of material will be dependent on its applications, 
especially the reduction in density to values far below that of water will 
make it usefull for buoyancy applications. 
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APPENDIX 
An air bubble of diameter 2r embedded in a matrix, can be represented 

by a hollow sphere embedded in that matrix, with a thin wall consisting of 
the same material as that of the matrix. The diameter of the sphere being 
2r+2d, where d is the wall thickness (Fig.4). 

Fig.4. Hollow glass bubbles in a glass matrix 

The volume fraction of the air bubbles V(a) = N*4/3*~*r 3 and that of the 
hollow spheres V(h) = N*4/3*~*(r+d) s, where N is the number of spheres per 
unit of volume. Substitution of a=0 (i.e. B=-I/A) in Kerner's equation 
(eq.l) for the air bubble composite yields: 

l-N*4/3*~*r s 
M = MI* l+N/A,4/3,~,r3 

whereas for the thin walled spheres composite (a>0) is found: 

l+N*4/3"~* ( r+d ) s *A*B 
M = MI* l.N,4/3,(r+d)S,B 

Equating both expressions yields: 

A*B = [r/(r+d)]Z = -i/(l+3d/r) = -I/C 

where C = l+3d/r = i 

so that: B = (a-l)/(a+A) - -I/(A*C) 

or a = (3d/r)*A/(I+A*C) = (3d/r)*A/(l+A). 

The 
thickness 
reads: 

conclusion 
and the 

is that a is proportional to the ratio of the wall 
radius of the hollow spheres. The overall modulus now 

M = M**(3d/r)*A/(I+A). 
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